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We assume that the displacements are small and that the total deforma-
tions are the sum of creep deformations and instantaneous elasto-plastic
deformations. "Instantaneous™ means that during loading and unloading
neither creep nor relaxation can be noticed.

1. Let us denote by U the total displacement vector, by u the elasto-
plastic displacement vector and by v the creep displacement vector. Thus
U=wu+tv. For ;he total deformation e, the creep deformation Pike and
the elasto~plastic deformation ¢, the following relations exist

2 =0 +WUn  Zpp=vtyt Wi 205 = WitV (1.1)
i = Qg T Puer U,=U-r, Up =0Ty, U =VTy

Here €., Pik and g; are the covariant components of the correspond-
ing strain tensors. The nonlinear terms in (1.1) are omitted by virtue
of the assumption of small displacements. Further, Vi(...) represents
the covariant derivative of the metric with the metric temsor g, =
T, XTI, I, are the coordinate vectors in the curvilinear system x'(i =
1, 2, 3) introduced in the body of volume V. For the velocity of creep

deformation &, we have

dv, dpi

k3

285 = Vb + Vit by=gr Ein= "3 (1.2
The creep relations are taken from the theory of flow {1}
¢
3 Y 3 ik T 1
i =758 (T.T) (0, — &0, P=\Hdt, TPy oy =35 (13)
o
HE =2k, Jo=ogy =ol,  E=gugik=E =0
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Here aik are the contravariant components of the stress tensor. The

function g(I", T) is obtained by experiment and is taken in the form [1,2]
g (T, T) = Ar~9pm™-2 (A.d, n = const) (1.4)

From the relation (1.3) it follows that
H=gI T)T (1.5)

For the solution of problems it is convenient to use the following
statement,

Among all states allowed by the kinematical constraints (1.2) in the
body and the kinematical relations on the surface of the body, only those
occur which assign a stationary (minimum) value to the functional

J= SSS A-brde 1[1:: v — SSSQ-WV— SS povas | =%—) (1.6)
Vv \ 2 S

Denote by SN the variation of the power of the external loads P and
the body forces @ in the variations of the creep displacement rates

N = SSS Q-8vaV + Ssgp.a%ds (v= %) .
vV

The power of internal stresses in the variation of creep displacement
rates is

M = SSS stk 8girdV (1.8)

A4
1-p p
Since g = AHr 4B H 7 51 =9, gi =0, 5P =50 =0, then

v, 8 =8(M—N)

M =48 5} A—ppde grite
v t+p

We shall show that for the actual states
(M ~—~Ny=0 (1.9

Here only variations in the velocity and the displacement of creep de-
formation are admitted. Since o' 8§ a=C ikrk x 53v/3x' then

3(M—N)= S&\ si"r,t~6.;% dv — SS,S Q-dvdV — SSSp.a‘}ds (1.10)

Applying to the first term the Ostrogradsky-Gauss theorem, we obtain
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(M —N)=— &gg {V ot + Q) 8o, av —SS {*n,+ P*}8v,dS (1.11)
v S
Consequently, if all static conditions are satisfied, and in addition
geometric and kinematic relations are not violated, then &§(M - N) = 0.
Conversely, if all geometric relations are satisfied, then by virtue of
the independency of Suk in and on the body, the relations (M - N) = 0
yield the equation of equilibrium. Since the quadratic form

02K 1 PRI

= E b = AP o
¢ 9808jn Sukin i e 08408;n Sukin

is positive-definite at §?f # 0 (for proof of this statement the method
]

of L.M. Kachanov [3, p.10 can be employed), then the function
E = AT POHM (4 4 p)

is convex in the sense of [5], namely

* * oE
E () —E () > (B — Eird) 3

For the satisfaction of the last condition it is necessary and suffi-
cient that the functional J reaches a minimum with respect to actual
velocity [5].

2. In order to write the functional J for thin plates and shells, we
assume that the stresses 033 are small compared with the stresses
o) { “aud apn (no sum with respect to « and P), and also we assume the
absence of shearing €13, E33- Here the coordinate x3 = z is measured
along the normal m of the middle surface So, to which the curvilinear
system x“ (x =1, 2) is connected with the coordinate vectors Pa The
normal unit vector m on the surface So is obtained from the relation

(2.1)

m%fz%x%,cnz—wnsz, ¢y = ¢13 =0, a:d%wwL 8,0 = Py Pp
The displacement vector of creep can be represented as

V= (v, — z0,) p* + vsm (2.2)

For the deformation and for the velocity of deformation of creep one
obtains

2PaB = Va¥s + Vala — 2baﬁv3 —32 (Va.ma + Vﬂma)
ZEaB = Vaz}ﬁ + Vﬂba - 2baB {;3 —2 (Va(l.)ﬁ + Vﬁ(:oa) (23)

o, =, b, s, (0 = deoa/ dt)
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Here V;(...) denotes the covarjiant derivative with respect to the
metric of the surface S, determined by metric tensor o . Moreover, b
denotes the covariant components of the second base tensor of the sur-
face So.

From (1.3) and using the assumption that 033

account §;5 = —~ €5, we have

is small, taking into

0% = %{&“uaa‘*sm 2.4)

By virtue of these assumptions, the functional (1.68) for thin plates
and shells can be written in the form

h
7, = S} S ATp, % d2dS, SS P, (5, — hin,) p* + sm} dSo —

- S+
h
- S S P_{ (6, -+ hwa)p® + v3m} dSo — S S P, { {9, —20a) p" -+ tym} dzdL (2.5)
- -h
where
¢
§H‘dt, Hi= .:g_ (EaptP +ERED) (2.6)

and 2h is the thickness of the shell, L is boundary of the middle sur-
face, P; is the loading vector acting on the shell surface; P, and P_ de-
notes the load on the surfaces S,(z = h) and S_(z = — h), respectively.

3. ¥We will use the functional (2.5) in order to solve the problem of
unsteady creep of a circular plate clamped along the edges, under uniform
transverse loading of intensity q.

¥We are looking for an approximate form, which results from the corre-
sponding problem of the linear theory of an elastic plate, namely

vp=fU—n, o1=v=0, [f=f(1) (3.1)

In the case considered we have

1
ay == r?, ag==rin?, bag =0, N = ' Tols=—1 3.2)

Here r is the radius of the plate, T A is the Christoffel symbol of
the second kind, 0 €< 1 <1, and the distance between any arbitrary point
of the plate and a point on its axis is equal to rn.

Substituting v, from (3.1) into (2.3) and using (3.2), one obtains
for J‘ !
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1 1 1

_ 2nrth g 8h? ')1+p(1+d) . NG
J* = 1+p A p‘f p-/ 1+p §ndn & ( .V—s—ra C'ﬂ dC anzq/S(i _nﬂ)ﬁndn (3.3)

-3 0

where
W=3—422 + 1308, C=z/h, [=df/dt (3.4)

Since for the actual state §J = 0, then the time-function f(t) is
determined by *

8k \1tpa4d) 7T
ndn}

1
dp ;b g0 { ( i
) q@n4d+1) 12n§ o 3.5)

which for dq/dt = 0 yields

1

. 3 d -n
PArl=Ard+1)¢"2n+d+1)" {1Zn S (78%;; x)l+m+ ) ndn} (3.6)
g ,

Thus, the total displacement of the plate is given by
U3=1.73+u3, U1=Ua=0

where ug is the elasto-plastic solution resulting from the geometrically
linear theory of thin plates.

4. The method outlined above in Sections 1 and 2 gives the possibility
of the determination of the displacement and deformation under unsteady
creep conditions. Determination of the stress according to the relation
(1.3) and (2.4), or according to the relations of the elasto-plastic de-
formation, cannot give the actual distribution, since from those rela-
tions one obtains different stress distributions. For the solution of
this problem it is convenient to use the method suggested in [3) bpased
on the variational principle of admissible variation of the state of
stress.

Let us use the fact that in our case this assumption is met (an
analogous assumption in the absence of instantaneous plastic deformation
was proved in [6]).

Among all states of stress, which do not violate the static condi-
tions inside the body and on the surface, only those actually occur which
assign a stationary value to the functional

e o (oo Goms @
v \4 s

Here by R is denoted the density of the complementary work in elasto-
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plastic deformations [4]

T

R=U+ S 8 (v) vdv (4.2)
0
where U is energy of volume deformation and

i R i,
Y=0("r, T= -}7§-T, =2 (GM“" - g%‘-‘qg) (4.3
If the plastic deformations are absent, we have
N i
h=U+—251:2=H

where T is the energy density of elastic deformation.

In the functional (4.1) the variation is permitted only in statical
characteristics. Note that the variation of the stresses is independent
of time ¢, i.e,

d ! d 4
ard¥ =0, Q=0 —P=0 (4.4)

In order to prove the given statement we construct the expression for
the power of the variations of internal stresses in actual velocities
of the total deformation and the power pf the variation of external
forces in actual total displacement velocities

8Ky = SSS &;,06"dV — XSS U.8QdV — SS U.3pPds (4.5)
v S
since
. . . . d 4R . A T
&ix = Pix T Qi 9ix = "t g5% Pﬁ=n+1rdsﬁr
then

A _48T™ 4 bR ) )
6K1=S§S{”+i r¢ Py +§ acik}égide—SSSU.éqdv__SSU,épds___
v 8

—3 S§S { . ‘j_ L %R}dV—-é S§S U-QaV —38 S§ U.pds

Thus, 8K = SKi and the difference K ~ K1 is not depeandent on the
stress, but for the actual state SKI = 0, In fact, since the statical
conditions are not violated

8Q = — y;0*r,, 8P = — 8o n,
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Hence

8Ky = S&S £, 05 dV 4 SKSU 705 r av & U-8s%rn.dS =
) A

U)L/‘

= ggg{éik”‘é‘ (: Uy + vl )}651de
v

Here we use the Ostrogradskii-Gauss theorem. Thus, if the compatibility
conditions for velocity of deformations are satisfied then 5K1 = 0. Con-
versely, from 8K1 = 0 follow the compatibility conditions of the velo-
cities of deformation. Consequently, for the actual state SK = 0. There-
fore, for thin plates and shells, with the assumption

SS} U-8QdV + SSS U-8PdS =0

one obtains from (4.1) the variational equation

h
A
6K* = 6 %% S {m _dT n+l + }dZdSO = O ([16)
8, “h
where
Ta 1
R, = U* -+ 6 (T*) TadT,, Un = U | o=, T* = 'E' (Gaﬁdaﬁ - 35*2), 35* = Ga.a:

0 (4.7)

The distribution of stresses for the state of unsteady creep can be
written as

o* =65, + A (1) (5, *F — 50, °°) (4.8)

as was suggested in [3]. Here 0(0)0B represents the initial distribution
of the elasto-plastic stress and O(e) represents the distribution of
the stresses resulting from creep.

Since o(o)ch and c(c)043 are statically admissible, caﬁ is a statically
admissible stress distribution. For A(t) we have the initial condition
A(0) = 0. Since (4.8) does not satisfy conditions (4.4), jinstead of Equa-
tion (4.6) one should take

h
A T2 d 3R,
3K, = &S S{—Z— r,-4r 1 Py -+ &t 5giP }éo“ﬁdzdso_ 0 (4.9)
g

as the original equations.

Since
d
8P = (c(c)“B — G«”“B) oA (EE 8o*P #:0)
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hence

\§

T S
S, —h

2°% Tx pgaB +dt%w}@w —5)" #)dzdSy = 0 (4.10)

This equation is used in order to obtain A(t) and can be written in
the form

d\
a(l) g +bA)=0 (4.11)

The solution of this equation can be obtained using numerical methods
(with the condition A(0) = 0).

Let the initial deformations be within the range of elasticity. Then
for a circular thin plate with a clamped boundary one obtains

rig 2ERS
Us=gz5 (4 — P, D= 30—
3r2q R " 3r3gz .
solan= g5 1 +v—CB+ v, coPan=175s (1 +v—(1+3v)n¥
3 1
T2 = 5 (s*s,5 — 35,%), Ry=Tl, =5 4" ;o (4.12)
36, = Gue's Gop = Aupoy 6°Y = AaBW

Consequently, from Equation (4.11) it follows that

L T

a(l) = SS AaBey (Ga(é)) ) (6 0 _ s s{c)) dzdsS,
Se ~h
‘ 3 dAPer
b(A) = SS S{AI‘*"“T*“"I 7(5“3 —a%%,) +,, —— T (4.13)
Se ~h

ds (® s g5 ©
oy
Ak [ c;tY }"(z)( dt 2: ) (s a(BC) (lg)) dzdS,

If the elastic constants are not dependent on the temperature then
dAappY/dt = 0, and for ¢ = const we have dc(%?/dt = 0. Then
h

3 d
—b(A) = Sg S {AI‘*—GT*n—l E(Smﬂ - c*aaﬁ) 4+ A )AaBpY Gdt }( a(g) Ga(g)) dzdS,
Sy ~h

Thus, we have succeeded in matching the distribution of instantaneous
elasto-plastic stresses with creep stresses. We have obtained the stress
distribution (4.8) continuous with respect to time.
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