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We assume that the displacements are small and that the total deforma- 
tions are the sum of creep deformations and instantaneous elasto-plastic 

deformations. “Instantaneous” means that during loading and unloading 
neither creep nor relaxation can be noticed. 

1. Let us denote by U the total displacement vector, by u the elasto- 
plastic displacement vector and by v the creep displacement vector. Thus 
U = u + v. For the total deformation ~~~~ the creep deformation Pik’ and 
the elasto-plastic deformation qik, the following relations exist 

Here Eik, Pik and qik are the covariant components of the correspond- 
ing strain tensors. The nonlinear terms in (1.1) are omitted by virtue 
of the assumption of small displacements. Further, v,(. . .) represents 
the covariant derivative of the metric with the metric tensor gik y 
‘i x ‘k; rk are the coordinate vectors in the curvilinear system x8( i = 
1, 2, 3) introduced in the body of volume V. For the velocity of creep 
deformation cik we have 

(1.2) 

The creep relations are taken from the theory of flow 111 

T2 =+ (5i”5ik - 3S2) (1.3) 

ZP = 2/r eikfik9 30 = oikgi, = 5; ) E = f&&k = sii = 0 
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Here oik are the contravariant components of the stress tensor. The 
function g(r. Tj is obtained by experiment and is taken in the form [I,21 

g (r, T) = Ar-dT*-l (A, d, n = const) (1.4) 

From the relation (1.3) it follows that 

H=g(r,T)T (1.5) 

For the solution of problems it is convenient to use the following 
statement. 

Among all states allowed by the kinematical constraints (1.2) in the 
body and the kinematical relations on the surface of the body, only those 
occur which assign a stationary (minimum) value to the functional 

Denote by 6N the variation of the power of the external loads P and 

the body forces Q in the variations of the creep displacement rates 

The power of internal stresses in the variation of creep displacement 
rates is 

cfM= 
sss 

Gik6&dV (i.8) 

Since g = AT 
-dp $-p, ’ ’ 

6r = 0, $’ = 0. 6P = SQ = 0, then 

We shall show that for the actual states 

&(M-N)=O (W 

Here only variations in the velocity and the displacement of creep de- 
formation are admitted, Since a’kScik = aakrk x 6av/axa then 

(1.10) 

Applying to the first term the Ostrogradsky-Gauss theorem, we obtain 
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8 tM - N) = - \\\ (&+k + Qk} &,dV - \\ { $kni + pk) (j;,dS (1.11) 
V S 

Consequently, if all static conditions are satisfied, and in addition 

geometric and kinematic relations are not violated, then 6(M - N) = 0. 

Conversely, if all geometric relations are satisfied, then by virtue of 

the independency of 6v, in and on the body, the relations 6(M - N) = 0 

yield the equation of equilibrium. Since the quadratic form 

PE 
cb = aEikaEjn &&,, = A-prdp 1 - 

is positive-definite at 6: # 0 (for proof of this statement the method 

of L.M. Kachanov [3, p. 109 can be employed), then the function 

E = A-~I’dkHi+p / (1 + p) 

is convex in the sense of [51, namely 

For the satisfaction of the last condition it is necessary and suffi- 

cient that the functional J reaches a minimum with respect to actual 

velocity [51. 

2. In order to write the functional J for thin plates and shells, we 

assume that the stresses u 33 are small compared with the stresses 

ooQ3J aaaJ aW (no sum with respect to a and P), and3also we assume the 

absence of shearing ~1~’ ~2~. Here the coordinate x = I is measured 

along the normal m of the middle surface Se, to which the curvilinear 

system xa (a = 1, 2) is connected with the coordinate vectors pa. The 

normal unit vector n on the surface Se is obtained from the relation 

(2.1) 
mcap - P,X PP, Cl2 = -cm = I/a, Cl1 = Cl2 = 0, a = det (a,&, a4 = P;Pp 

The displacement vector of creep can be represented as 

v = (v, - ma) pa + v3m (2.2) 

For the deformation and for the velocity of deformation of creep one 

obtains 

2pap =z vavp + vpv, - 2Qvt - z (P& + VP%) 

%,p = v&3 + vp;, - 2bmp ;3 - 3 kc& + ~$)a) 

00 = v, c3 I- bahvi (% = doaldt) 

(2.3) 
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Here Va(. . . ) denotes the covarlant derivative with respect to the 
metric of the surface S, determined by metric tensor a +. Moreover, 

b+ 
denotes the covariant components of the second base tensor of the sur- 

face So. 

From (1.3) and using the assumption that 033 is small, taking into 

By virtue of these assumptions, the functional 
and shells can be written in the form 

h 

(2.4) 

(1.6) for thin Plates 

(2.5) 

and 2h is the thickness of the shell, L is boundary of the uiddle sur- 
face, PL is the loading vector acting on the shell surface; P, and P_ de- 
notes the load on the surfaces S+(Z = h) and S_(E = - h), respectively. 

3. We will use the functional (2.5) in order to solve the problem of 

unsteady creep of a circular plate clamped along the edges, under uniform 
transverse loading of intensity q. 

We are looking for an approximate form, which results from the eorre- 
sponding problem of the linear theory of an elastic plate, namely 

vs = f (1 - TV, v1= VII = 0, f = f @I (3.0 

In the case considered we have 

all = r2, 028 = r%$, hap = 0, 
1 

r,“, = -, 
‘i 

r,4 = - tl (3.2) 

Here r is the radius of the plate, r A 
053 

is the Christoffel symbol of 

the second kind, 0 < TJ G 1, and the distance between any arbitrary point 
of the plate and a point on its axis is equal to rq. 

Substituting vi from (3.1) into (2.3) and using (3.2), one obtains 
for J I 



I.C. Teregulov 

1 i 

J * = Znr’h A-Pfd"f"+P 
1+IL 

(3.3) 

where 

xa = 3 --12Tla f 1394, C= z/h, j=df/dt 

Since for the actual state 6J = 0, 
l 

determined by 

fdP/l* = APq (2n + d + I) 12n 

then the time-function 

(3.4) 

f(t) is 

(3.5) 

which for dqldt = 0 yields 

fdtl = At (d + i) qn (2n + d + l)n ( $ ($$ x)l+p(l+d) qdq) 12n 
L-n 

(3.6) 

Thus, the total displacement of the plate is given by 

us = 219 + us, u1= Ua=O 

where u3 is the elasto-plastic solution resulting from the geometrically 
linear theory of thin plates. 

4. The method outlined above in Sections 1 and 2 gives the possibility 
of the determination of the displacement and deformation under unsteady 
creep conditions. Determination of the stress according to the relation 
(1.,3) and (2.4). or according to the relations of the elasto-plastic de- 
formation, cannot give the actual distribution, since from those rela- 
tions one obtains different stress distributions. For the solution of 
this problem it is convenient to use the method suggested in [31 based 
on the variational principle of admissible variation of the state of 

stress. 

Let us use the fact that in our 6888 this assumption is met (an 
analogous assumption in the absence of instantaneous plastic deformation 
was proved in llsl). 

Among all states of stress, which do not violate the static condi- 
tions inside the body and on the surface, only those actually occur which 
assign a stationary value to the functional 

Here by R is denoted the density oE the complementary work in elasto- 
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plastic deformations [4] 

R=U+~B(r)rdr 

0 

where .!I is energy of volume deformation and 

(4.2) 

(4.3) 

If the plastic deformations are absent, we have 

1 
h’=U+~Za=rl 

where !I is the energy density of elastic deformation. 

In the functional (4.1) the variation is permitted only in statical 
characteristics. Note that the variation of the stresses is independent 
of time t, i.e. 

In order to prove the given statement we construct the expression for 
the power of the variations of internal stresses in actual velocities 
of the total deformation and the power gf the variation of external 
forces in actual total displacement velocities 

(4.5) 

-_ a 
V 

Thus, 6X = SK, and the difference 
stress, but for the actual state 6K, 

conditions are not violated 

SQ = - viasikrk, 

K - K, is not dependent on the 
= 0. In fact, since the statical 
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Hence 

di,8sikdV.+ ti. v$‘“r,dV + 
ss 

~.6csikr n.dS = 
k 2 

V R 

= iik - -k (vi ok $ Vk”i) 85ikdV 
V 

Here we use the Ostrogradskii-Gauss theorem. Thus, if the compatibility 

conditions for velocity of deformations are satisfied then Sk, = 0. Con- 

versely, from 6K, = 0 follow the compatibility conditions of the velo- 

cities of deformation. Consequently, for the actual state 6K = 0. There- 

fore, for thin plates and shells, with the assumption 

ir.SQdV + 
ss 

iJ.GPdS = 0 
S 

one obtains from (4.1) the variational equation 

h 

BK,=b cs s I 
b. -h 

-& I’-*T*“+l +dG}dzdS.=O (45) 

where 

T* 

s 

1 
R, = U, + 6 (z,) r&r,, cr. = U I a==o, 2*2 = T (0 UP Gap - 35*2), 35, = 6,: 

0 (4.7) 

The distribution of stresses for the state of unsteady creek can be 

written as 

8 = 6(o)@ + h (t) (G,,)=p - cpO),q (4.3) 

as was suggested in [31 . Here o(O) 4 represents the initial distribution 

of the elasto-plastic stress and CJ(~) o@ represents the distribution of 

the stresses resulting from creep. 

Since a(e) op 
and a(c) 

M are statically admissible, oap is a statically 

admissible stress distribution. For A(t) we have the initial condition 

A(O) = 0. Since (4.8) does not satisfy conditions (4.4), finstead of Equa- 

tion (4.6) one should take 

h 
A 

6K, = ~ r*-dT+n-1 ‘T,2 aa’xP + $ ~}6J”pdzdS,, = 0 

as the original equations. 

(4.9) 

Since 
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hence 

8T a d 8R ---*-+_-- 
(% 

aB 
L3c@ dt a,# - ‘(0) ap)dzdSo = 0 (4.10) 

This equation is used in order to obtain A(t) and can be written in 

the form 

dh 
a (A) dt + b (5) = 0 (4.11) 

The solution of this equation can be obtained using numerical methods 

(with the condition A(O) = 0). 

Let the initial deformations be within the range of elasticity. Then 

for a circular thin plate with a clamped boundary one obtains 

4 

us = - s’4; (1 - vY* 
2Eha 

D = 3 (1 - vz) 
3rzqz 

G(OF a11 = 3us 11 + y - (3 + Y)Tf], o(o)z*azz = gg [1 + Y - (1 + 3v) ?f] 

Te2 = ; (&sLzp - 35*2) 9 
1 

R, = II, = y AaPP%apap, 

30, = a,:, q,p = Aapp, @Y = A;$& 

Consequently, from Equation (4.11) it follows that 

(4.12) 

h 

a(h) = 
ss s 

AaPPY (6dpo) - o,b”‘) (a$?) - a$)) dzdS,, 

So -h 

If the elastic constants are not dependent on the temperature then 

d,@Py/dt = 0. and for q = const we have du( ,,) +/dt = 0. Then 

-b (h) = Ar,-aT,n-’ &Up - cj,aaP) + h (t) AapPY f??!!? 
dt 

(c$;) - so,(;)) dzd& 

Thus, we have succeeded in matching the distribution of instantaneous 

elasto-plastic stresses with creep stresses. We have obtained the stress 
distribution (4.8) continuous with respect to time. 
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